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1. INTRODUCTION

In many design search and optimization situations, the objective of optimization or design
improvement is closely related to one or more natural frequencies of a dynamic system. The
problem typically involves solving an eigenvalue problem repeatedly for a large set of values
of the parameters which describe the system or the structure being designed. When the
system is complex, the parameter space tends to be large (i.e., the number of parameters that
de"ne the geometry, material properties, etc. is large). The situation is further complicated
by the fact that complex geometries usually require a large number of degrees of freedom for
a reasonably accurate analysis (e.g., an appropriate "nite-element analysis). For this reason,
the design search and optimization problem tends to be computationally very demanding.
In most situations, it is this step involving the solution of the eigenproblem associated with
the free vibration that consumes most computational resources.

The present note is motivated by this engineering need. A method based on interpolation
for an approximate estimation of eigenvalues is presented. Instead of the usual
approximation around a reference design, the approach here is to "nd approximations (at
possibly several points) over an interval of the parameter of interest. This problem has been
attempted via an alternative route by Bhaskar [1] where the approximations are sought for
eigenvectors by interpolating the mode shapes themselves over the parameter interval of
interest; trial vectors obtained in this manner were used in a Rayleigh-quotient
approximation. The present scheme di!ers in that it provides approximations for
eigenvalues directly from the estimates that use exact eigensolutions at the terminal points
of the design interval.

2. WEIGHTED AVERAGES OF EIGENVALUE ESTIMATES OVER AN INTERVAL

The natural frequencies of a mechanical system or a structure are those frequencies in
which the system is capable of executing an in- or out-of-phase free vibratory motion. When
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the non-trivial solutions are sought, the following eigenvalue problem is obtained:

Ku"jMu, (1)

where K and M are the symmetric mass and sti!ness matrices that characterize the system.
The eigenvector u

i
represents the ith undamped mode shapes whereas the square root of the

eigenvalue j
i
is the ith natural frequency. Due to this simple algebraic relationship between

the natural frequencies and the corresponding eigenvalues, we shall con"ne our attention to
the eigenvalues of a system. Suppose that a parameter that describes the system is denoted
by p and we are presently concerned with solving eigenproblem (1) for a large number of
values of p. The parameter p could be a length, thickness, mass, sti!ness, density, modulus of
elasticity, etc.

A common procedure of estimating natural frequencies of two designs that are fairly close
to each other is to use a perturbation technique. The classical perturbation formula (in the
spirit of the analysis of Rayleigh [2]; see also Fox et al. [3] and Brandon [4]) is based on
neglecting higher order terms from the perturbed eigenvalue problem K@u@"j@M@u@;
K@"(K#DK) and M@"(M#DM) where the respective primed quantities refer to the
perturbed system. The result for the ith mode is
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where DK"K@!K and DM"M@!M are the perturbations in the sti!ness and mass
matrices respectively. The approximate natural frequencies are calculated from
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. Equation (2) uses the eigensolutions j
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, u
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of the unperturbed problem and the information related to the actual mass and sti+ness
matrices M@ and K@ (through the actual values of DM and DK) respectively. Since, in most
practical applications, the calculation of these two matrices is computationally less
demanding (e.g., in a typical "nite-element formulation it will involve assembly of elements),
overall, the perturbation calculation turns out to be cheap. Also note that the variation of
j@
i
(p) with the parameter p is not, in general, linear despite having used a &&linear''

perturbation formula; j
i
being calculated as j@

i
"j
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i
, and Dj

i
is given by equation (2).

The word linear for the type of perturbation refers to the degree of terms retained in the
expansion of the perturbed eigenproblem. This recipe of approximate calculation of
frequencies works well when the magnitude of the perturbation is &&small''. In design search
and optimization studies, one is most often encountered with the problem of large
perturbations Dp"p@!p. In the present note, the problem is posed as that of
approximately calculating frequencies over an interval instead of the usual approach of
posing it as a problem of approximation around a reference point: the words &&point'',
&&interval'', etc. are referred to the quantities in the parameter space.

Consider calculating the natural frequencies of a vibratory system for several values in
the interval p3[p

0
, p

f
] (see Figure 1 for a hypothetical situation; the exact variation of j (p)

is shown using the dotted line and will be assumed to be not available). The problem can be
viewed as one of perturbation from either end of the interval. The estimates obtained by
using a perturbation formula from either ends will, in general, be di!erent; and this is shown
using the two solid lines in Figure 1. It is assumed that the eigensolutions at the two
terminal points are available. The subscript i refers to the relevant quantity for the ith mode
throughout. Working &&forward11 from the left end, one has
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Figure 1. A sketch of the interval over which approximations are sought. The x-axis represents a design
parameter, whereas the y-axis represents an eigenvalue (both exact and approximate; the approximations are
based on exact eigensolutions at the two terminals of the interval).
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where DKo"K(p)!Ko, DMo"M(p)!Mo, with superscript &&o'' referring to the left end
throughout. In a similar manner, one can work &&backwards'' from the right end of the
interval to obtain
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where the superscript f refers to the quantities at the right end. Therefore, the two (di!erent)
estimates of the eigenvalue j

i
are de"ned as
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respectively. The estimates are equal to the exact values at the two terminal points and
progressively worsen as we proceed towards the other end. Motivated by this observation,
the estimate of the ith eigenvalue is de"ned as
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which is a linear combination of the two estimates based on the "rst order perturbation
formula (of equations (3) and (4)) from the two ends treated as reference. Note that j3

i
(p) is

not a linear interpolation between the exact values at the two ends. Rather, it is a weighted
average of two di!erent estimates within the interval. It is these weights that vary linearly
over the interval.

The combination in equation (6) has been formed in such a way that the exactness of the
&&estimates'' at the terminal points &&o'' and &&f 11 is preserved:
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which results from the limiting properties lim
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) and that the weights in equation (6) become 1 and 0 as pPp
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0 and 1 as pPp
f
. Therefore, one could associate a &&trust region'' in the vicinity of the two

ends of the interval; errors are expected to be relatively large as we move away from these
two points.

The procedure of equation (6) is based on estimates that are obtained from two "rst order
perturbation analyses. This procedure is on the lines of the method presented by Sahu [5].
This idea can also be used with estimates obtained directly from the Rayleigh quotient since
it requires a reasonable guess for the eigenvectors. Assuming that the eigenvectors do not
change as the system parameter undergoes a change, Rayleigh quotient estimates for the
eigenvalue are given by
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The "rst of these quotients is based on a trial vector equal to the eigenvector corresponding
to the left end of the interval; the second is based on a trial vector corresponding to the
eigenvector at the right end. Using these estimates for the ith eigenvalue for any parameter
value p, a weighted average can be constructed as
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Again, as before, the exactness of estimates at the terminal points is maintained since
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For either of the two methods presented via equation (6) or (9), the errors at the two
terminal points of the interval are exactly known. This is because two approximations are
available (such as those from equations (3) and (4) in case of the "rst order perturbation, and
similar equations (8) for the Rayleigh-quotient approximation) on the basis of the exact
eigensolutions at the ends of the interval. Note the two error terms e

1
and e

2
extracted from

the two &&branches'' of approximations in Figure 1. The knowledge of the relative
magnitudes of e

1
and e

2
can be used to associate a level of &&trust'' to the two di!erent

approximations (one based on working with the eigensolutions at the left end and one based
on working with the eigensolutions at the right end) for either of the two methods. Referring
to Figure 1, the error at the left end e

1
Ae

2
the error at the right end. Since e

1
is associated

with the performance of the approximation on the basis of eigensolutions at the right end, it
is reasonable to say that the approximation based on working with eigensolutions at the left
end should receive greater trust.

The di!erent levels of trust in the two branches of the approximations can be
quantitatively incorporated into the process of assigning the weights as follows. The
approximation of equation (6) is modi"ed as
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where t(p)"(p!p
o
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). Similar modi"cations to the method based on the Rayleigh

quotient leads to the alteration of equation (9) as
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One must be careful while using this approximation. Unless the values of e
1

and e
2

are very
di!erent, it is not recommended to use equation (11) or (12), since the degree of trust derived
solely on the basis of errors at the ends tends to bias the weights unreasonably in favour of
one of the two branches.

Again, the weights are designed in such a manner that the exact values at the terminal
points are reproduced from the approximations

lim
p?po

j)
i
(p)" lim

p?po
RK

i
(p)"j

i
(p

o
) and lim

p?pf

j)
i
(p)" lim

p?pf

RK
i
(p)"j

i
(p

f
). (13)

The working of the approximations presented in equations (6), (9), (11) and (12) will be
illustrated in the next section.

3. AN EXAMPLE

Consider a stepped "xed}free cantilever beam as shown in Figure 2. The change in the
depth of the beam takes place at the centre of the span. The &&parent'' design has length
¸ and depth h in the vertical direction. The width in the direction perpendicular to the paper
is taken as unity, since the natural frequencies of a beam are independent of this geometrical
parameter (sti!ness as well as inertia depend linearly on the width b so that the natural
frequencies are independent of it). The depth of the beam in the "rst half (near the clamped
end, Figure 2(a)) is modi"ed in the range h)h

1
)2)5h. In Figure 2(b), the same range of
Figure 2. A cantilever beam with a step at the centre. The step is treated as a modi"cation on a uniform beam. (a)
When the modi"cation is applied to the &&clamped half '' and (b) When the modi"cation is applied to the &&free half ''.



Figure 3. Approximations for the example in Figure 1(a). The "rst order perturbation as well as the Rayleigh-
quotient approximate are presented on the basis of eigensolutions at the two terminals. The two estimates are
combined as a weighted average over the interval [(***), equation (6) and (s s s), equation (9)].**, Exact;
)} ) } ) } ) } ) , "rst order perturbation ref &&o''; ) ) ) ) , "rst order perturbation ref &&f 11; h, Rayleigh-quotient approxima-
tion ref &&o''; e, Rayleigh-quotient approximation ref &&f ''.
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modi"cation is applied to the dimension h
1
for the half of the beam at the free end. All other

parameters that describe the structure (e.g., length, width, density, modulus of elasticity, etc.)
are kept unchanged.

A "nite-element model was created using 80 beam elements, each having two degrees of
freedom at each node. The modi"ed design parameter h

1
is expressed as the original

dimension h plus a fractional change over this; so that h
1
"(1#f )h, 0)f)150%. The

interval is sub-divided into 25 smaller segments, each representing a modi"cation of 6%
over the original dimension. The eigenvalues are presented in a non-dimensional form by
using
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where EI
o
is the bending sti!ness of the original beam, m

o
its linear density, and ¸ the length

as shown in Figure 2.
The exact values are calculated for the "rst eigenvalue j

1
of eigenproblem (1), and the

results are shown in Figure 3 for the beam in Figure 2(a). The "rst order perturbation based
on the known exact eigensolutions at the left end (corresponding to f"0) are shown using
line with dots and dashes. The &&exact value'' of j*

i
"12)3624 for f"0 (as calculated from

the "nite-element model) matches very closely with the analytical solution for a "xed}free
uniform cantilever beam; this shows a good convergence for the level of discretization
chosen. The same approximation based on the eigensolutions at the right end of the interval



Figure 4. Approximations for the example in Figure 1(b). The "rst order perturbation as well as the Rayleigh-
quotient approximation are presented on the basis of eigensolutions at the two terminals. The two estimates are
combined as a weighted average over the interval [(} }} }), equation (6) and (s s s), (equation 9)]. **, Exact;
)} ) } ) } ) } , "rst order perturbation ref &&o''; ) ) ) ) , "rst order perturbation ref &&f 11; **, h, Rayleigh-quotient
approximation ref &&o''; e, Rayleigh-quotient approximation ref &&f ''.
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is shown using the dotted line. In this manner, there are two &&branches'' of the "rst order
perturbation originating from either end. A second approximation based on the Rayleigh
quotient with eigenvectors at either of the two ends shows a fairly similar behaviour. Both
approximations work well close to the vicinity of the point whose eigensolution is taken as
a reference for the approximation. However, as the perturbation becomes large, errors start
to grow for each branch of the approximation. Equation (6) (for the "rst order perturbation)
and equation (9) (for the Rayleigh-quotient approximation) combine the two branches into
one approximation for each of the two methods. The results are presented using dashed line
for the approximation of equation (6) and using circles for the approximation of
equation (9). They illustrate that the errors are contained within reasonable limits by
combining the results of the branches of approximations. Both equations show very similar
performance in terms of achieving accuracy for this case.

The approximations for the example in Figure 2(b) are presented in Figure 4. Again, the
two branches for each method of approximation increase progressively as one proceeds
away from the &&reference design''when the approximations around a reference point (&&o'' or
&&f 11) are used. Note that the &&exact value'' of j*

i
at the left end is the same as that in Figure 3.

When the information regarding approximations around the terminal points is combined
into a single expression (as in equations (6) and (9)) the approximations &&home in'' at the
two ends and keep the errors within a reasonable limit over the parameter range of interest.

The "rst eigenvalue increases as the thickness of the "rst half of the beam increases as in
Figure 2(a), whereas it decreases in case of the modi"cation as in Figure 2(b). Thickening
the beam increases inertia as well as sti!ness of the system. For the "rst mode of a cantilever



Figure 5. Approximations using weights that incorporate the knowledge of errors at the terminal points. ** ,
Exact; } } Equation (6); h, Euqation (11); e, Equation (9); s, Equation (12)
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beam, it is seen that thickening the clamped half has an overall sti+ening e!ect. On the other
hand, when the same modi"cation is applied to the half that contains the free end, the
overall e!ect is that of softening for the "rst mode. This could be explained by the fact that
the overall gain in the kinetic energy due to extra mass is more than compensated by the
gain in the potential energy due to sti!ening of the root for the modi"cation in Figure 2(a).
On the other hand, for a modi"cation of the type in Figure 2(b), the gain in the kinetic
energy dominates the ratio of the potential energy over the kinetic energy; hence a decrease
in the eigenvalue.

The mechanics of this is easily understood by considering the expressions for the kinetic
energy ¹ (t) and the potential energy < (t),

¹(t)"P
L

0

(m/2)wR (x, t)2 dx and < (t)"P
L

0

(EI/2)w@@(x, t)2dx, (15)

where EI is the #exural rigidity and m the mass per unit length of the beam. The shape of the
"rst mode (see, for example, standard texts such as reference [6]) is such that it has small
values of the transverse displacement w(x, t) in the range 0)x)¸/2, whereas it has
relatively large values of the curvature w@@(x, t) in the range. As opposed to this, the
transverse displacement w (x, t) is large for the "rst mode (and hence, for synchronous
motion at a frequency u, wR (x, t)"uw(x, t) is large) in the range ¸/2)x)¸ but the
curvature is small in this portion of the beam. Indeed, the curvature is zero at the free end.
Hence, due to the expressions in equation (15), the contributions to the kinetic energy come
primarily from the free end of the beam, whereas those for potential energy come from the
clamped end. Taking Rayleigh's approach, since an eigenvalue is the ratio of these two
energy terms, the di!erence in the observed behaviour of the two modi"cations is readily
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explained: in the case of a modi"cation as in Figure 2(a), increase in the potential energy
dominates; for a modi"cation as in Figure 2(b), increase in the kinetic energy dominates.

Another point of interest is the fact that Rayleigh-quotient-based approximations always
provide an estimate of eigenvalue greater than the actual one due to the well-known
theorem of Rayleigh. This one-sided boundedness is not a property of the "rst order
perturbation (compare various approximations with respect to the exact values in Figures 3
and 4).

Here (in Figure 4), the Rayleigh-quotient-based approximation having the right terminal
point as the reference must be given a high degree of con"dence (see the diamonds; this
information is available in the absence of the knowledge of the exact value due to the small
value of e

1
at the left end of the interval). Therefore, the situation is ideal for application of

the method of equation (12). Expectedly, the results of the approximation are excellent: the
circles (in Figure 5) lie very lose to the true values. On the other hand, application of
equation (11) does not improve the approximation because e

1
and e

2
are roughly of the

same order of magnitude.

4. CONCLUSIONS

A method of combining approximations around the two terminal points of a parameter
interval for calculating approximate values of eigenvalues is presented. The approximations
include the "rst order perturbation and the one based on the Rayleigh-quotient
approximation. It was shown through a simple example that reasonable estimates of the
eigenvalues can be obtained by combining &&cheap calculations'' over an interval judiciously.
The method was further re"ned by the use of an additional weight re#ecting the trust of
approximations inferred from the errors at the terminals of the interval.
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